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Abstract

Many economic applications have found quantile models useful when the explana-
tory variables may have varying impacts throughout the distribution of the outcome
variable. Traditional quantile estimators provide conditional quantile treatment effects.
Typically, we are interested in unconditional quantiles, characterizing the distribution
of the outcome variable for different values of the treatment variables. Conditioning on
additional covariates, however, may be necessary for identification of these treatment ef-
fects. With conditional quantile models, the inclusion of additional covariates changes
the interpretation of the estimates. This paper discusses identification of uncondi-
tional quantile treatment effects when it is necessary or simply desirable to condition
on covariates. I discuss identification for both exogenous and endogenous treatment
variables, which can be discrete or continuous, without functional form assumptions.
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1 Introduction

Quantile estimation is useful in describing the impact of variables throughout the outcome

distribution. While mean regression is more popular in empirical work, it only provides

estimates of how the explanatory variables impact the conditional mean of the outcome

variable. This summary statistic may be useful, but it is also possible that it cannot explain

the effect at any part of the outcome distribution. Quantile estimation, introduced by

Koenker and Bassett [1978], allows the researcher to understand the effects throughout the

entire distribution. For example, we may be interested in how maternal smoking affects

birthweight, but we are likely primarily interested in how maternal smoking impacts the

lower part of the birthweight distribution due to the problems associated with low birthweight

newborns. Quantile regression allows this parameter to be estimated.

Traditional quantile estimators, such as the Koenker and Bassett [1978] quantile re-

gression (QR), are useful for the estimation of conditional quantile treatment effects (QTEs).

Conditional QTEs describe the effect of treatment variables on the conditional distribution

of the outcome variable. For example, they characterize the impact on the upper end of the

distribution where the “upper end” is defined by observations with large values of the out-

come variable given the covariates. This may include observations that are in the lower part

of the outcome distribution for their treatment variables. While conditional QTEs can be

useful, we are typically interested in unconditional quantile treatment effects. Unconditional

QTEs describe the difference in the quantiles for different values of the variables of interest,

unconditional on other covariates. With exogenous treatment variables, one way to resolve

this issue is simply to not control for the other covariates. Then, QR provides unconditional

QTEs.

A problem arises, however, when it is necessary or simply desirable to condition on
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a separate set of covariates for the purposes of identification. The disturbance plays a special

role in conditional quantile regression by characterizing the unobserved “proneness” for the

outcome variable. As covariates are added, some of the unobserved proneness becomes ob-

served. Consequently, the interpretation of the estimates from a quantile regression changes

as covariates are added. The covariates “shift” an observation’s placement in the conditional

distribution.

This quality is not always desirable. Researchers typically include additional co-

variates for the purposes of identification, but the desired interpretation of the parameters

of interest does not change. This paper considers unconditional quantile treatment effects

in the presence of control variables. These effects tell us the difference between the un-

conditional quantiles for different values of the variables of interest. I discuss identification

of unconditional QTEs for both exogenous and endogenous variables. Furthermore, I do

not limit the discussion to cases where these is a single binary treatment variable. Finally,

identification does not originate from any functional form assumptions.

I also compare the results of this paper to the conditions for conditional QTEs.

Identification of conditional QTEs requires assumptions on the relationship between the

additional covariates and the disturbance since the effect of these covariates must be sepa-

rately identified. With unconditional QTEs, no such assumptions are required, making the

conditions for unconditional QTEs less restrictive than those needed for conditional QTEs.

Similarly, I discuss how conditional QTEs are a special case of unconditional QTEs.

In the next section, I introduce a new terminology which makes it easier to dis-

cuss unconditional QTEs. Section 3 reviews the literature. Section 4 discuss unconditional

treatment effects for both exogenous and endogenous treatment variables. Section 5 con-

cludes.
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2 Terminology

Quantile regression is useful for nonseparable models such as

y = q(d, u∗), u∗ ∼ U(0, 1). (1)

Doksum [1974] interprets the disturbance u∗ as unobserved (or underlying) “prone-

ness” or individual ability. It is a “rank variable” which describes the underlying rank

within the distribution of the outcome variable. Observations with a large u∗ are “prone”

to a large y for a given d. For example, if the dependent variable is an individual’s wage,

then individuals with a high u∗ are “high ability” individuals in the labor market. This

paper finds this terminology slightly limiting but builds on this interpretation. The concern

is that researchers may need or want to account for control variables x which are related to

proneness.

This paper considers a nonseparable model of the form

y = q(d, u∗(x)), u∗ ∼ U(0, 1). (2)

d denotes the policy variables or treatment variables. These are the variables of interest that

we believe affect the outcome variable for a given level of proneness. x denotes measures of

“observed proneness” (or observed skill). These are the control variables that we want to

condition on for identification purposes.

Let u represent “unobserved proneness” (or unobserved skill). Consequently, we

can define “total proneness” as u∗ ≡ f(x, u), u∗ ∼ U(0, 1), where the relationship between

x and u is never specified and, importantly, may be arbitrarily correlated with one another.

Unconditional QTEs describe the impact of the policy variables at different levels of “total
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proneness.” To clarify this terminology further and illustrate its value, x and u determine

placement in the outcome distribution assuming all observations have the same d. The pol-

icy variables impact the outcome variable of each observation based on that observation’s

u∗. If we are interested in how job training affects earnings, the policy variable is a dummy

variable for “training.” Other variables such as race, gender, and education affect each per-

son’s earnings regardless of training status. These are the control variables or “observed

proneness.” The terminology should be clear from equation (2). The policy variables (d)

impact the distribution of y. The control variables or “observed proneness” are determinants

(or correlates) of the rank variable.

With mean regression, the disturbance does not take on such an important inter-

pretation since distinguishing between observed and unobserved proneness is unnecessary.

Consider OLS estimation of the specification

y = α + d′δ + x′φ + ζ.

An OLS regression of y on d will provide consistent estimates if d is orthogonal to x and the

disturbance. Including x in the regression does not affect the consistency or interpretation

of the estimates.

With quantile estimation, however, the inclusion of x changes the interpretation even

when x is orthogonal to d. Consider a case where each quantile is specified as linear function

of the covariates. Since P (y ≤ d′γ(τ) + x′β(τ)) is not necessarily equal to P (y ≤ d′γ̃(τ)),

the interpretation of the parameters changes. The quantiles refer to the distribution of the

outcome variable conditional on the included covariates. Adding covariates turns some of

the unobserved proneness into observed proneness. Since traditional quantile estimators only

allow the parameters of interest to vary based on unobserved proneness, the interpretation

of the estimates changes. Put differently, the 90th percentile of u is likely different from the
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90th percentile of u∗. QR and other conditional QTE estimators are limited by assuming

that all variables are “policy variables.”

To adopt similar terminology as Chernozhukov and Hansen [2008], the Structural

Quantile Function (SQF) of interest for equation (2) is

Sy(τ |d) = q(d, τ), τ ∈ (0, 1). (3)

The SQF defines the quantile of the latent outcome variable yd = q(d, u∗) for a fixed d

and a randomly-selected u∗ ∼ U(0, 1). In other words, it describes the τ th quantile of y

for a given d. Notice that once the SQFs are estimated, counterfactual distributions of the

outcome variables can be generated for any given values of d. For known or estimated SQFs,

knowledge of the distribution of x is unnecessary to generate this counterfactual distribution.

The unconditional QTEs are defined by q(d′′, τ) − q(d′, τ) for some d′′,d′.

Imbens and Newey [2009] use slightly different notation to discuss SQFs. They

discuss conditional quantile models as useful for nonseparable equations such as

y = g(d,x, ε). (4)

The SQF is Sy(τ |d,x) = g(d,x, mε(τ)) where mε(τ) is the τ th quantile of ε. This condition

contrasts to the SQF of this paper which, to use similar terminology, is equal to g(d, mε∗(τ))

where ε∗ = f(x, ε).

Notice that with a conditional SQF such as g(d,x, τ), generating counterfactual

distributions for a given d requires holding x constant as well. This technique generates a

distribution for y|d,x when we are interested in the distribution of y|d. Alternatively, one

could vary x and u, but this would require some structural assumptions on the relationship

between x and u. Similarly, QTEs are defined by the difference in the SQF for different
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values of d and a fixed x. With the SQF in equation (3), it is possible to generate the

distribution of y|d with no restrictions on the relationship between x and u∗ and to estimate

unconditional QTEs.

Conditional quantile estimators such as QR map “unobserved proneness” into quan-

tiles. With some abuse of notation, QR makes the implicit mapping u ↔ τ . The top quan-

tiles are relevant to observations with high values of the outcome values given all of the

policy variables and covariates. More generally, however, we may be interested in estimation

techniques which map “total proneness” into quantiles: u∗ ↔ τ . Unconditional QTEs are

concerned with exactly this mapping. It should become clear that conditional QTEs are a

special case of unconditional QTEs when all variables are simply considered policy variables.

Unconditional QTEs are more general because they allow for conditioning on other covari-

ates. This is useful because we are typically interested in how a policy affects the distribution

of y, not the distribution of y|x.

Given conditional quantile regression techniques, unconditional QTEs can be es-

timated by only including the policy variables under the assumption that u∗|d ∼ U(0, 1)

(Koenker and Bassett [1978]) or, in the IV case, u∗|z ∼ U(0, 1) (Chernozhukov and Hansen

[2008]). However, these conditions may not be met and conditioning on additional covariates

may be necessary for identification purposes. Conditional quantile estimators fail in these

cases. I discuss two motivating examples to clarify this terminology further.

2.1 Motivating Examples

2.1.1 Job Training and Earnings

Abadie et al. [2002] estimate conditional quantile treatment effects for job training programs

on earnings. They use randomized assignment in the Job Training Partnership Act (JTPA)
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to understand how job training impacts earnings at different quantiles. The motivation

for quantile analysis in this context is to understand how job training affects people of

different skill levels in the labor market. Since the treatment is randomly-assigned, it is not

necessary to control for other covariates, but it is typical in empirical work to condition on

other variables. Abadie et al. [2002] control for variables such as race, high school graduation

status, previous work experience, etc. The problem is that these covariates are components of

underlying ability to earnings. People who are high school graduates are probably high skilled

relative to people without high school degrees. We are likely interested in how job training

affects, say, low skilled workers. The Abadie et al. [2002] estimator uses conditional quantiles,

defining low quantiles as workers who are low skilled given their high school graduation

status. This may include people who are relatively high skilled workers because they are

more educated.

To illustrate this issue even further, assume that Abadie et al. [2002] have an “abil-

ity” variable which is strongly-correlated with the true ability level of each individual. This

is useful information and should be used during estimation. Simply controlling for “ability,”

however, causes problems because it is difficult to interpret the resulting estimates. The high

quantiles now refer to individuals with high earnings given their ability measures. These are

not necessarily people with high underlying earnings potential as some of these people may

be low-earners.

2.1.2 Vouchers and Student Achievement

Rouse [1998] studies whether receipt of a voucher in the Milwaukee Parental Choice Program

(MPCP) increases the mean test score of students. The vouchers were randomly-assigned

conditional on individual characteristics, which potentially independently affect test scores.

Using panel data, Rouse is able to condition on individual fixed effects to eliminate this
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source of bias. The impact of the vouchers at different parts of the test score distribution

should also be interesting, making quantile estimation potentially useful. Does the program

help low-achieving students more than high-achieving students?

Let αi = underlying fixed skill of student i, Tit = test score for student i at time t,

vit = an indicator for the receipt of a voucher. The underlying model is

Tit = δt(αi + εit) + v′
itβ(αi + εit) (5)

The SQF is

St(τ |v) = δt(τ) + v′
itβ(τ) (6)

Once we estimate the SQF, we can generate counterfactual distributions of test

scores. For illustrative purposes, assume there are only 2 time periods in the data. With

mean regression, researchers would typically difference the data. With quantiles, however,

differencing changes the distribution of the outcome variable. The “high-performing” stu-

dents in differenced data refer to those experiencing the largest gains in test scores. Some of

these students may, cross-sectionally, be in the lower part of the test distribution. If we are

interested in how vouchers affect high ability and low ability students, we cannot difference

the data. Similarly, simply including individual fixed effects in a quantile regression or using

a location-shift model causes problems since this implicitly “differences out” the individual’s

placement in the distribution.

Instead, we want to condition on α without changing the interpretation of the pa-

rameters. In related work, Powell [2009] introduces a panel data estimator which conditions

on the individual fixed effect for identification purposes but lets the resulting estimates be

interpreted in the same manner as traditional cross-sectional (QR) quantile regression esti-

mates. In other words, the high quantiles refer to observations in the top of the cross-sectional
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distribution given their policy variables. This estimator allows unconditional QTEs to be

estimated in the presence of individual fixed effects. This panel data estimator is a special

application of the moment conditions developed below.

3 Existing Literature

A growing literature has extended the use of conditional quantile estimation. For example,

Chernozhukov and Hansen [2008] introduce an IV version. Relatedly, Chernozhukov and

Hansen [2005] consider identification of conditional QTEs when covariates are endogenous.

The identification discussions below are similar to those found in Chernozhukov and Hansen

[2005] as many of the conditions are related. Estimation of conditional Structural Quantile

Functions is also discussed in Imbens and Newey [2009].

A small literature has also specifically focused on the extension of quantile estimation

to panel data. This literature is relevant because of its relationship to Powell [2009] which

discusses the merits of using unconditional QTEs in the presence of individual fixed effects.

In the second motivating example above, the underlying equation has the form

yit = d′
itγ(αi + εit). (7)

The coefficients of interests are a function of the “total residual,” including the fixed ef-

fect. Estimating this equation allows the results to be interpreted in the same manner as

cross-sectional quantile regression results, which also vary based on the total residual. Many

existing quantile panel data estimators, however, do not estimate the above equation. In-

stead, they use a location-shift model, separately estimating α so that the parameters of

interest vary based only on εit, the observation-specific disturbance. These estimators are

useful in contexts when we want to define high quantiles by observations with large values
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of y relative to their fixed level.

Koenker [2004] introduces a quantile fixed effects estimator which separately esti-

mates a fixed effect under the assumption that

yit = αi + d′
itγ(εit) (8)

Similarly, Harding and Lamarche [2009] introduce an IV quantile panel data estimator under

the assumption that

yit = αi(εit) + d′
itγ(εit) (9)

In both cases, the coefficient of interest (γ) varies only with ε and not the “total

residual.” For illustrative purposes, assume that α is known and provided to the econome-

trician. These estimators are equivalent to a traditional quantile regression of (y − α) on

d. Using the above example, it relates voucher receipt to the test scores of students at

the top of the distribution relative to their own underlying fixed skill level. Assume that

(α1 = 40, T11 = 50), (α2 = 80, T21 = 90), and v11 = v21. Since Ti1 − αi = 10 in each case

(and voucher status is the same), existing panel data estimators assume that both of these

students have the same “ability” and would react the same to receipt of a voucher. However,

cross-sectionally, student 1 is low-achieving and student 2 is high-achieving. The estimates

cannot be interpreted in the same manner as cross-sectional estimates because the SQF has

been changed to Syit
(τ |dit, αi) = αi + d′

itγ(τ) or Syit
(τ |dit, αi) = αi(τ) + d′

itγ(τ) where τ

relates to ε only.

Powell [2009] introduces an estimator that estimates the relevant SQF (equation (6))

while conditioning on individual fixed effects. The fixed effects are used for identification

purposes only, allowing for an arbitrary correlation between the fixed effects and the policy

variables (or instruments). This makes sense. Typically, researchers employ panel data and
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fixed effects models because they do not believe their model is identified cross-sectionally.

However, they do not necessarily want to change the interpretation of their results.

Other existing quantile estimators for panel data include separate terms for the fixed

effect too. These include Canay [2010], Galvao [2008], and Ponomareva [2010].

A related literature uses a correlated random effects approach for exogenous covari-

ates. These papers impose structure on the relationship between the covariates and the

fixed effects. Importantly, however, they let the quantiles be defined by the total residual

(including the fixed effect). Abrevaya and Dahl [2008] introduced this technique. Graham

and Powell [2008] discuss a similar estimation strategy.

Similarly, Chernozhukov et al. [2009] discuss identification of bounds on quantile

effects in nonseparable panel models where the quantiles are defined by (αi, εit).

There is a smaller literature on unconditional quantile regression. Firpo et al. [2009]

introduce an unconditional quantile regression technique for exogenous variables. They al-

low the effect of the variables of interest to vary based on the placement in the existing

distribution of the outcome variable. While useful in many contexts, it is difficult to write

the underlying equation in similar notation as equation (1) since the coefficient of interest is

a function of y.

The difficulty is that some observations in the existing distribution are already

“treated.” The estimator essentially estimates conditional quantiles and integrates over the

distribution of all the explanatory variables. This technique lumps together relatively low-

ability individuals with policy variables that causally increase y with high-ability individuals

without the same policy variables, simply because their current y are the same. However,

we are typically interested in how the policy variables affect low-ability individuals and,

separately, high-ability individuals.
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Just as Koenker and Bassett [1978] and other conditional quantile estimators as-

sume that all variables are “policy variables,” the Firpo et al. [2009] estimator also fails to

distinguish between policy variables and control variables. This is why the introduction of

the terminology in the last section should be useful.

Firpo [2007] and Frölich and Melly [2009] propose unconditional quantile estimators

for a binary treatment variable and discuss identification. These estimators re-weight the

traditional check function to get consistent estimates. In this paper, I discuss identification

of unconditional QTEs in a broader context, including multivariate, non-binary variables.

Furthermore, my approach is very different and does not involve re-weighting the check

function. The moment conditions are very intuitive and provide a natural interpretation. In

complementary work, Powell [2010] develops an unconditional quantile estimator using the

conditions discussed in this paper.

4 Conditions and Identification

The specification of interest is

y = q(d, u∗), u∗ ∼ U(0, 1). (10)

The SQF is

q(d, τ), τ ∈ (0, 1). (11)

Unconditional QTEs, then, are the change in τ th quantile of y due to a change in d: q(d′′, τ)−
q(d′, τ) for some d′′,d′.

The motivation for this analysis is the possibility that for u∗ ∼ U(0, 1), u∗|d �∼
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U(0, 1). The policy variables may not be exogenous. Conditioning on another set of covari-

ates may be necessary. Note, however, that u∗|d,x �∼ U(0, 1) since x provides information

about u∗. This condition is why QR fails in this situation. Instead, exogeneity here is defined

as u∗|d,x ∼ u∗|x. In other words, once x is conditioned on, d is exogenous. Again, note

that QR is a special case. If all variables are policy variables so that we do not have x, then

this condition reduces to the QR assumption.

4.1 Exogenous Policy Variables

Define X as the support of x: X ≡ {x|P (x) > 0}. Similarly, D ≡ {d|P (d) > 0}.

The following conditions hold jointly with probability one:

A1 Potential Outcomes and Monotonicity: y = q(d, u∗) where q(d, u∗) is increasing in

u∗ ∼ U(0, 1).

A2 Independence: P (u∗ ≤ τ |d,x) = P (u∗ ≤ τ |x).

A3 Full Rank: For all x ∈ X and d ∈ D, either P (x|d) < 1 or P (d|x) < 1.

A4 Continuity: y continuously distributed conditional on d,x.

The first assumption (A1) is a standard monotonicity condition for quantile estima-

tors. A2 states that d does not provide additional information about u∗ once x is conditioned

on. The purpose of A3 is to rule out situations where d and x perfectly predict one another.

It is equivalent to a full rank condition which requires that there be independent variation in

d and x. It is necessary for identification. A4 is also necessary for identification and typical

in the context of quantile estimators.

It is especially important to note that no restrictions have been placed on the rela-

tionship between u∗ and x. This is a significant advantage of the approach of this paper.
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4.1.1 Moment Conditions

Theorem 4.1 (Moment Conditions). Suppose A1 and A2 hold. Then for each τ ∈ (0, 1),

P [y ≤ q(d, τ)|d,x] = P [y ≤ q(d, τ)|x] , (12)

P [y ≤ q(d, τ)] = τ. (13)

Proof of (12):

P [y ≤ q(d, τ)|d,x] = P [q(d, u∗) ≤ q(d, τ)|d,x] by A1

= P [u∗ ≤ τ |d,x] by A1

= P [u∗ ≤ τ |x] by A2

= P [y ≤ q(d, τ)|x] by A1

Proof of (13):

P [y ≤ q(d, τ)] = P [q(d, u∗) ≤ q(d, τ)] by A1

= P [u∗ ≤ τ ] by A1

= τ by A1

Theorem 4.1 gives us the two moment conditions. Equation (13) holds because

the unconditional distribution of u∗ is uniform. This condition holds for conditional quantile

models as well. Equation (12) tells us that once we condition on x, then d should not provide

additional information about P [y ≤ q(d, τ)]. In Powell [2009], x only includes individual
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fixed effects, implying the use of within-individual pairwise comparisons for estimation. With

two observations with the same values for x, we have observations with the same “observed

proneness.” Conditioning on the fixed effect provides useful information since variation in

d is more likely to be exogenous to differences in u∗ after conditioning on determinants (or

correlates) of u∗. In other contexts, this technique is more difficult to implement. These are

discussed in Powell [2010].

These moment conditions make intuitive sense. Since u∗ is a function of x, condi-

tioning on x provides information about u∗. Notice that the relationship between u∗ and

x is never specified or known. Consequently, the distribution of u∗|x is unknown. This is

unnecessary information. By integrating out x using the Law of Iterated Expectations, we

get condition (13).

The reason these conditions are different from those for conditional quantiles is

because we do not have the condition P [y ≤ q(d, τ)|d,x] = τ for all d,x. Instead, the above

conditions require all comparisons to be made “within-x.” The conditional distributions are

never specified. Certain covariates may predict, on average, smaller u∗. These conditions

allow the covariates to inform the distribution. While we let the SQF vary based on “total

proneness,” we want to use “observed proneness” for identification by implicitly or explicitly

comparing observations with the same observed proneness. Instead of assuming that d is

orthogonal to the entire disturbance, we can relax this and only assume that d is orthogonal

to the unobserved part of the disturbance. u∗|d,x ∼ u∗|x can hold even when u∗|d �∼
U(0, 1).

4.1.2 Identification

This section discusses the uniqueness of q(d, τ) in meeting the moment conditions. Define

Dx ≡ {d|P (d|x) > 0}. Dx is the support of d for a given x.
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Lemma 4.1. If P [y ≤ q(d, τ)|d,x] = P [y ≤ q̃(d, τ)|d,x], then q(d, τ) = q̃(d, τ).

This holds under A4.

Theorem 4.2 (Identification). If (a) P [y ≤ q̃(d, τ)|d,x] = P [y ≤ q̃(d, τ)|x] for all d,x and

(b) P [y ≤ q̃(d, τ)] = τ and (c) A1-A4 hold, then for all d ∈ D, q̃(d, τ) = q(d, τ).

Proof. By (a) and equation (12), we know that for all d ∈ Dx, P [y ≤ q̃(d, τ)|d,x] =

P [y ≤ q(d, θx)|d,x] for some θx ∈ [0, 1]. This condition must hold for all x.

A3 implies that θx = θ ∈ (0, 1). In words, θx must be equal for all x.1

By Lemma 4.1, q̃(d, τ) = q(d, θ).

Because of (b), we know that θ = τ .

4.1.3 Relationship to Conditional Quantile Regression

Traditional quantile estimators, such as QR in Koenker and Bassett [1978], estimate condi-

tional QTEs. They do not separately condition on x. It should be clear that the moment

conditions are the same when all variables are “policy variables” (i.e. there is no x to

condition on). Combining equations (12) and (13) in this case:

P [y ≤ q(d, τ)|d]
(12)
= P [y ≤ q(d, τ)]

(13)
= τ. (14)

1Note that this is not saying that P [y ≤ q(d, θx)|d,x] is the same for all x.
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4.1.4 Special Case: Linear Quantiles

Empirical research typically uses linear specifications. Identification in this case means that

there are unique values for the coefficient on each variable in d. The same conditions above

must hold with the exception of A3 which can be replaced by:

A3’ P (d′c = 0|x) = 1 ⇔ c = 0

4.2 Endogenous Policy Variables

Even after conditioning on x, the policy variables may not be exogenous. The conditions

necessary for identification are more difficult to describe when the policy variables are en-

dogenous. Instruments are needed and they must have a rich correlation with the entire dis-

tribution of the policy variables. In this section, I discuss the conditions when the policy vari-

ables and instruments are discrete. The policy variables will be indexed by k ∈ {1, · · · , K},
the instruments by l ∈ {1, · · · , L} where L ≥ K. I allow the variables in x to be con-

tinuous or discrete. The appendix discusses the conditions necessary for continuous policy

variables.

First, I discuss some notation. I define a matrix of the relationship between z and

d for a given xm. Similarly, I define a “stacked” matrix which contains this relationship for

multiple values of x.

Π′(xm) ≡

⎡
⎢⎢⎢⎢⎣

P (d = d1|z1,xm) · · · P (d = dK |z1,xm)

...
. . .

...

P (d = d1|zL,xm) · · · P (d = dK |zL,xm)

⎤
⎥⎥⎥⎥⎦ , Π′(xm(1), · · · ,xm(s)) ≡

⎡
⎢⎢⎢⎢⎣

Π′(xm(1))

...

Π′(xm(s))

⎤
⎥⎥⎥⎥⎦
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Similarly, I define matrices where the probabilities are not dependent on z:

Π′(xm) ≡
[

P (d = d1|xm) · · · P (d = dK |xm)

]
⎛
⎜⎜⎜⎜⎝

1

...

1

⎞
⎟⎟⎟⎟⎠

1×L

, Π′(xm(1), · · · ,xm(s)) ≡

⎡
⎢⎢⎢⎢⎣

Π′(xm(1))

...

Π′(xm(s))

⎤
⎥⎥⎥⎥⎦

Finally, I define the following matrices:

Γ(xm) ≡

⎡
⎢⎢⎢⎢⎣

P (y ≤ q(d1, τ)|d = d1,xm)

...

P (y ≤ q(dK , τ)|d = dK ,xm)

⎤
⎥⎥⎥⎥⎦ , Γ(xm(1), · · · ,xm(s)) ≡

⎡
⎢⎢⎢⎢⎣

Γ(xm(1))

...

Γ(xm(s))

⎤
⎥⎥⎥⎥⎦

This notation is helpful since we are interested in P [y ≤ q(d, τ)|z,xm] for all z

which can be written as Π′(xm)Γ(xm). Finally, define Zx ≡ {z|P (z|x) > 0}, Z ≡ {z|P (z) >

0}.

The following conditions hold jointly with probability one:

IV-A1 Potential Outcomes and Monotonicity: y = q(d, u∗) where q(d, u∗) is increasing in

u∗ ∼ U(0, 1).

IV-A2 Independence: P (u∗ ≤ τ |z,x) = P (u∗ ≤ τ |x).

IV-A3 First Stage: For some (xm(1), · · · ,xm(s)), Π′(xm(1), · · · ,xm(s)) is full rank.

IV-A4 Full Rank: For all x ∈ X and d ∈ D, either P (x|d) < 1 or P (d|x) < 1.

IV-A5 Continuity: y continuously distributed conditional on z,x.
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The assumptions are generally the same as before. The main difference is that,

even conditional on x, d can be endogenous. The underlying assumption now is that

u∗|z,x ∼ u∗|x. IV-A3 is a “first stage” assumption that states that z must impact the

entire distribution of d. This must hold for some set of values for x. As before, no restric-

tions have been placed on the relationship between x and u∗. The moment conditions are

also similar to the exogenous case:

Theorem 4.3 (IV Moment Conditions). Suppose IV-A1 and IV-A2 hold. Then for each

τ ∈ (0, 1),

P [y ≤ q(d, τ)|z,x] = P [y ≤ q(d, τ)|x] , (15)

P [y ≤ q(d, τ)] = τ. (16)

Equation (15) implies that
[
Π′(xm) − Π′(xm)

]
Γ(xm) = 0 for all xm. Again, the defining fea-

ture is that P [y ≤ q(d, τ)|z,x] is unknown and allowed to vary based on x. The instrument

z is exogenous after conditioning on x.

4.2.1 Identification

We need the IV equivalent to Lemma 4.1, which holds due to IV-A5:

Lemma 4.2. If P [y ≤ q(d, τ)|z,x] = P [y ≤ q̃(d, τ)|z,x], then q(d, τ) = q̃(d, τ).

Theorem 4.4 (IV Identification). If (a) P [y ≤ q̃(d, τ)|z,x] = P [y ≤ q̃(d, τ)|x] for all z,x

and (b) P [y ≤ q̃(d, τ)] = τ and (c) IV-A1 - IV-A5 hold, then for all d ∈ D, q̃(d, τ) =

q(d, τ).

Proof. P [y ≤ q̃(d, τ)|z,x] = P [y ≤ q̃(d, τ)|x] implies that for all xm, Π′(xm)Γ̃(xm) = Π′(xm)Γ̃(xm).
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By IV-A3, then, P [y ≤ q̃(dk, τ)|d = dk,x] = θx for some θx ∈ [0, 1] which is constant for

all k.

By IV-A4, we know that θx = θ ∈ (0, 1) for all x.

By Lemma 4.2, q̃(d, τ) = q(d, θ) for all d.

Because of (b), we know that θ = τ .

This section shows that q(d, τ) is unique. See the appendix for a discussion about conditions

for continuous variables.

4.3 Discussion

The conditions discussed above are very similar to those found in Chernozhukov and Hansen

[2005] which considers identification of conditional quantile treatment effects. In fact, the

assumptions necessary to identify unconditional QTEs are arguably much less restrictive

than those necessary for conditional QTEs since no assumptions must be made regarding

the exogeneity of x. Instead, the main difference for identification is the addition of a moment

condition. This condition uses conditional distributions for identification without affecting

the unconditional distribution.

The defining aspect of any quantile model is the equation P [y ≤ q(d, τ)] = τ . Con-

ditional quantile models are restrictive. For a SQF including both policy variables and

control variables - i.e. g(d,x, τ) - these models require P [y ≤ g(d,x, τ)| z,x] = τ (where

it is possible that z = d for exogenous policy variables) to hold for all z,x. Identification

of unconditional QTEs only requires the unconditional distribution to meet this condition.

Instead, z and x are allowed to inform the distribution of the disturbance. An additional

21



moment condition is needed, P [y ≤ q(d, τ)|z,x] = P [y ≤ q(d, τ)|x]. This condition looks

“within-x” for identification. Importantly, no assumptions on the relationship between x and

u∗ are required. Conditional QTEs require additional assumptions on this relationship.

5 Conclusion

This paper discusses unconditional quantile treatment effects and the conditions under which

they are identified. Unconditional QTEs are useful to characterize the impact of policy vari-

ables on the distribution of the unconditional outcome variable. I discuss identification

for both exogenous and endogenous policy variables. Conditional quantile estimators can

be used to estimate unconditional QTEs by not including additional covariates. However,

sometimes identification requires conditioning on additional covariates or it might simply

be desirable. This paper develops moment conditions for unconditional quantiles that are

intuitive and allow for an arbitrary relationship between the disturbance and the control

variables. Interestingly, this fact implies that unconditional QTEs require less restrictive

assumptions than the equivalent conditional QTEs. Powell [2009] and Powell [2010] dis-

cuss estimation of unconditional quantiles in different contexts using the moment conditions

discussed in this paper.
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A Appendix: Identification with Continuous Endoge-

nous Policy Variables

While the general intuition of the discrete variable case is valid, the conditions for identifi-

cation with continuous policy variables are more complicated. I replace IV-A3 with

IV-A3’ If
∫
d∈Dx

a(d|x) [f(d|z,x) − f(d|x)] dd = 0 for all z ∈ Zx, then a(d|x) = a(x).

This condition is a “first stage” condition, requiring z to provide rich variation in

d conditional on x. IV-A3’ states that a(d|x) must be constant for all d ∈ Dx. With

this assumption, we know that P [y ≤ q̃(dk, τ)|d = dk,x] = θx for some θx ∈ [0, 1] which is

constant for all k.

The rest of the identification proof follows as before.
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